ADVANCED GCE UNIT
 MATHEMATICS (MEI)

4753/01

Methods for Advanced Mathematics (C3)

THURSDAY 18 JANUARY 2007

Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72 .

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
This document consists of 6 printed pages and 2 blank pages.
HN/5 © OCR $2007[\mathrm{~K} / 100 / 3632] \quad$ OCR is an exempt Charity
[Turn over

Section A (36 marks)

1 Fig. 1 shows the graphs of $y=|x|$ and $y=|x-2|+1$. The point P is the minimum point of $y=|x-2|+1$, and Q is the point of intersection of the two graphs.

Fig. 1
(i) Write down the coordinates of P .
(ii) Verify that the y-coordinate of Q is $1 \frac{1}{2}$.

2 Evaluate $\int_{1}^{2} x^{2} \ln x \mathrm{~d} x$, giving your answer in an exact form.

3 The value $£ V$ of a car is modelled by the equation $V=A \mathrm{e}^{-k t}$, where t is the age of the car in years and A and k are constants. Its value when new is $£ 10000$, and after 3 years its value is $£ 6000$.
(i) Find the values of A and k.
(ii) Find the age of the car when its value is $£ 2000$.

4 Use the method of exhaustion to prove the following result.

No 1 - or 2 -digit perfect square ends in $2,3,7$ or 8

State a generalisation of this result.

5 The equation of a curve is $y=\frac{x^{2}}{2 x+1}$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x(x+1)}{(2 x+1)^{2}}$.
(ii) Find the coordinates of the stationary points of the curve. You need not determine their nature.

6 Fig. 6 shows the triangle OAP , where O is the origin and A is the point $(0,3)$. The point $\mathrm{P}(x, 0)$ moves on the positive x-axis. The point $\mathrm{Q}(0, y)$ moves between O and A in such a way that $\mathrm{AQ}+\mathrm{AP}=6$.

Fig. 6
(i) Write down the length AQ in terms of y. Hence find AP in terms of y, and show that

$$
\begin{equation*}
(y+3)^{2}=x^{2}+9 \tag{3}
\end{equation*}
$$

(ii) Use this result to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{y+3}$.
(iii) When $x=4$ and $y=2, \frac{\mathrm{~d} x}{\mathrm{~d} t}=2$. Calculate $\frac{\mathrm{d} y}{\mathrm{~d} t}$ at this time.

Section B (36 marks)

7 Fig. 7 shows part of the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=x \sqrt{1+x}$. The curve meets the x-axis at the origin and at the point P .

Fig. 7
(i) Verify that the point P has coordinates $(-1,0)$. Hence state the domain of the function $\mathrm{f}(x)$.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2+3 x}{2 \sqrt{1+x}}$.
(iii) Find the exact coordinates of the turning point of the curve. Hence write down the range of the function.
(iv) Use the substitution $u=1+x$ to show that

$$
\int_{-1}^{0} x \sqrt{1+x} \mathrm{~d} x=\int_{0}^{1}\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) \mathrm{d} u .
$$

Hence find the area of the region enclosed by the curve and the x-axis.

8 Fig. 8 shows part of the curve $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=\left(\mathrm{e}^{x}-1\right)^{2} \text { for } x \geqslant 0
$$

Fig. 8
(i) Find $\mathrm{f}^{\prime}(x)$, and hence calculate the gradient of the curve $y=\mathrm{f}(x)$ at the origin and at the point $(\ln 2,1)$.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\ln (1+\sqrt{x})$ for $x \geqslant 0$.
(ii) Show that $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are inverse functions. Hence sketch the graph of $y=\mathrm{g}(x)$.

Write down the gradient of the curve $y=g(x)$ at the point $(1, \ln 2)$.
(iii) Show that $\int\left(\mathrm{e}^{x}-1\right)^{2} \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{2 x}-2 \mathrm{e}^{x}+x+c$.

Hence evaluate $\int_{0}^{\ln 2}\left(\mathrm{e}^{x}-1\right)^{2} \mathrm{~d} x$, giving your answer in an exact form.
(iv) Using your answer to part (iii), calculate the area of the region enclosed by the curve $y=\mathrm{g}(x)$, the x-axis and the line $x=1$.

BLANK PAGE

BLANK PAGE

